Mathematical Proof That  2 = 1
Searching for a math impossibility

Try this one out - see if you can find the hole here!
(Don’t scroll down until you’ve given it a good shot ...)

Initial supposition    x = y
Multiply both sides by x:     xx = xy
Subtract y squared from both sides:     xx - yy = xy - yy
Factor both sides:     (x + y)(x - y) = y(x - y)
Divide both sides by (x - y):     x + y = y
Substitute y for x, based on initial supposition:     y + y = y
Replace y with any number (eg. 1):     1 + 1 = 1 or 2 = 1

Scroll down to see the ‘flaw’ ...

The step that divides through by (x - y) is effectively dividing by zero, based on the initial supposition. That invalidates the subsequent results. Horse Tickle Old Crutch Shelf Centre of Canada Vacation Time For Kids Amsterdam Dress Greek Bailout Garden of Eat'En Dog Shampoo One Way Repairs Stone Wall Art Grad Support Radar Speed Check Camouflage Face Crab Bridge Illusive Animal Kingdom Off The Wall Biker Buffalo Art TitanoBoa Secret Graduation Gift Fish Fingers      